This writing is provided in English first, followed by Korean.
이 글은 영어 -> 한국어 순으로 작성되어 있습니다.

- Role: Accepts the raw pixel values of an image, typically represented as a matrix of (height x width x color channels).
2. Convolutional layers
- Role: These are the core building blocks of a CNN. They use 'kernels' (or filters) to convolve the input, extracting key features like edges, corners, and textures. The result is then passed to the next layer.
- Benefit: They can extract essential features while preserving the spatial relationships between pixels.s
3. Activation Function
- Role: Introduces non-linearity to the model. This allows the network to learn more complex patterns, which improves calculation effectiveness and accuracy.
4. Pooling layers
- Role: Reduce the spatial dimensions (width and height) of the feature maps while retaining the most important information.
- Benefit: This decreases the computational load, helps mitigate overfitting, and improves the model's generalization ability.
- Types:
- Max Pooling: Selects the maximum value from each patch of the feature map.
- Average Pooling: Calculates the average value from each patch of the feature map.
5. Fully Connected Layers
- Role: Connects every neuron from the previous layer to every neuron in the current layer. This layer takes the high-level features extracted by the previous layers and uses them to make the final classification decisions.
6. Output Layer
- Role: Generates the final output of the network, such as a probability distribution for classification tasks, based on the features learned throughout the network.
- 역할: 이미지의 원본 픽셀 값(색상 채널 x 높이 x 너비 x 깊이 )을 받는 곳
2. 합성곱층 (Convolutional Layers)
3. 활성화 함수 (Activation Function)
- 역할: 모델에 비선형성(non-linearity) 추가 -> 계산 효율성과 정확도 높임. 이를 통해 더 복잡한 패턴을 학습 가능.
4. 풀링층 (Pooling Layers)
-
역할: 특징 맵(feature map)의 필수 정보는 유지 + 차원(주로 가로, 세로)을 축소
-
장점: 계산량 줄이기 & 과적합(overfitting) 방지 & 모델 일반화 성능 향상
-
종류:
- 최대 풀링 (Max Pooling): 특정 영역에서 가장 큰 값을 선택
- 평균 풀링 (Average Pooling): 특정 영역 값들의 평균을 계산하여 선택
5. 완전 연결 계층 (Fully Connected Layers)
- 역할: 이전 계층의 모든 뉴런을 다음 계층의 모든 뉴런에 연결하여 최종적인 결정을 내림
6. 출력층 (Output Layer)
- 역할: 학습된 특징들을 바탕으로 최종 예측 값이나 분류 결과를 생성
Reference 참고
Image Reference 이미지 출처
https://www.ibm.com/think/topics/convolutional-neural-networks
https://blog.lukmaanias.com/2024/12/18/convolutional-neural-networks-cnn-an-in-depth-exploration/